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Abstract— The nature of Grid and distributed computing strengths; there is no single fastest protocol for evenasivn.
implies communication between heterogeneous systems ovar The best choice most often depends on the environment in

wide and ever-changing variety of network environments. O®n  \yhich the user’s application exists. The user must consitler
large amounts of data are stored in remote locations and mudte - . .
a minimum the following parameters:

transmitted in bulk. It is desirable to have the bulk data transfers

be as fast as possible; however, because of the dynamic neti
involved, it is often hard to predict what protocol will provide
the fastest service for a given situation. In this paper we psent
XIOPerf, a network protocol testing and evaluation tool. XIOPerf
is a command line program written on top of Globus XIO with
a simple and well-defined interface to many different protool
implementations. XIOPerf was created to give users a way to
quickly and easily experiment with an open-ended set of pratcols
over real networks to determine which will best suit their needs.
We present a brief study of the overhead introduced by XIOPef

Network type: Is it a dedicated link, or does some
quality of service guarantee that a portion of the
bandwidth is dedicated to the user?

Network activity: Is the network typically overuti-
lized or underutilized? How congested is it? How
much packet loss is expected? Does the protocol
need to be fair to other users?

Endpoints: Are the endpoint machines fast enough to

and the performance when using a variety of protocols. keep up with the network, or are they the bottleneck
in the pipeline?

Application: How does the application consume the
data? Does it write to disk? If so, what is the

I. INTRODUCTION

The nature of Grid [1]-[4] and distributed computing im-
plies an inherent need for communication. Resources that mu  disk speed? Are many memory copies made? How
interact are distributed across many networks. An importan  Will the applications consumption of data affect data
type of communication in these environments is bulk data sending rates or data packet loss.
transfer. Often this means sending a file from one resourceUnfortunately, determining these parameters is not easy.
to another, but it can also mean streaming large datasets frblany of the factors are not known, and some, like network
a scientific instrument or from a computation. The importasictivity, are always changing. Additionally, there aretfas
aspect of bulk transfer is that it involves very large daimsetoo subtle to categorize that nevertheless can dramaticall
Because of the size to be transferred, the protocols usetl maffect performance. Even if a valid conclusion can be drawn
be as efficient as possible. The quest to find the most efficiext paper, it may not be the best solution in practice because
transfer protocols is a large and ongoing area of research.of factors such as errors in (or liberties taken with) theuakt

Many protocols [5]-[10] have been developed and continimplementation of the protocol stack.
to evolve. Researchers strive to solve the problem of efficie  The most reliable way for a user to determine what protocol
bulk data transfer in better and faster ways. The solutioaes @ best is to actually try the various protocols. Clearlysthi
usually targeted at solving a specific part of the problenrm&o approach is not realistic. However, by defining standarerint
protocols are designed for dedicated networks and are ainfades for test applications to use and by creating a framewor
at the greedy acquisition of bandwidth; others are desigoedfor assisting protocol implementation, it may be feasibléry
coexist with the traffic of multiple users in a shared networla large number of them.

Sometimes the problem is looked at by the send rate, and othelf the effort required to transform a proof-of-concept im-
times by how fast the user consumes data. In any case, the pleinentation or a proprietary reference implementatido in
user typically has one simple question: What protocol i bes standard interface were minimized, protocol authors migh
for my needs? be willing to transform the implementation into the stamtar

Answering that question can be a difficult task. Many factofsamework. Even if they did not carry out the transformation

must be identified and considered. Every protocol has #gplication developers interested in experimenting with t



protocols might be motivated to spend the small amount of ' “ Feport wil i be witten to sidout . o o e
. . - . -bs # set the length of the read/wite buffer and thereby controls
effort required to morph the implementation into the stan- the amount of data to post at one time.
. . . - . -w# A TCP specific option. This sets the TCP window size and
dard framework. Once the implementation is accessible via mai ntains interface compatibility with IPerf
. . -n # Sets the nunber of bytes to transfer to #.
a standard interface, a common testing tool can accuratelyr <path> fitename for input if sending, and output if receiving.
. n By default transfers are menory to nenory.
evaluate protocols over real-world networks. This is e¥act -s s a sender
. A -R Be a receiver
What X|OPeI’f St”ves tO aCCOmpI'Sh -P# The nunber of parallel transfer to conduct at 1 tine.
. . . - i d:

XIOPerf IS a Command ||ne t00| that pl‘esentS the user Wlth i <::g?1tla\2tire[1‘r/16irnngl ieent node and connect to the given contact string.
a familiar interface and set of options for performing bugital =~ ~° "™ e " of the next ariver o add to the stack
transfer over a network. The tool measures the performance
characteristics of a transfer and reports them to the user.
XIOPerf is written on top of Globus XIO [11] so it has
all of the dynamically loadable transport driver functibtya
allowing it to address the concerns we have outlined.

The remainder of this paper is organized as follows. We ﬁrS
present related work. We then introduce the XIOPerf progran}/

its architecture, and how to use its basic functionality. We. Others

next describe the wrapblock functionality, which makeselri  \jany other network measurement and testing tools are
creation much easier; wrapblock has been added to Globysjjaple [15]. While these tools are often used in conjiamct
XIO as part of this work. Finally, we evaluate the test!ngltoquth Iperf, they are not aimed at end-to-end bandwidth testi
by measuring the amount of overhead the abstraction layghe exception is pathrate). Moreover, none of these tools
adds and the performance achieved using XIOPerf with r‘?ﬂ’bvide a feature to test the performance of arbitrary and
protocols over real networks. extensible protocols on a network.

II. RELATED WORK Ill. XIOPERF

Fig. 1. Some command line options to XIOPerf.

operating system. Since that time, some ports of it have been
n{ade to be more user friendly and to run on other operating
S . 4

stems, such as Microsoft Windows.

We briefly discuss here a few network measurement toolsXIOPerf presents a similar interface to that of IPerf. It

and compare their fetures with those of XIOPerf. is a command line tool with many of the same options
and behaviors. Just as with IPerf, XIOPerf runs as a server

A. IPerf on one side of the network and a client on the other. The

IPerf is the de facto standard for measuring and optimizirdient connects to the server, and a bulk data transfer sccur
bulk transfer performance. IPerf is a command line tooltenit according to the parameters given. The user is given many
in C++ by NLANR [12]. IPerf allows a user to send messageasntime options, including the amount of data to transfer,
via either TCP [13] or UDP [14]. A user can choose either twhich side sends and which receives, buffer sizes to use, and
send a file and have the receiver write the file to disk or wehether to perform disk I/O. Some of the options can be found
remove the disk from the equation and only send data to aimdFigure 1.
from memory in its process space. In addition to measuringThe option that is most important, and that makes XIOPerf
bandwidth, IPerf also measures jitter, an important asghett uniqgue among applications of its kind, is -D. This allows the
XIOPerf does not yet address. IPerf has proved to be aser to specify what protocol will drive the bulk transfeherl
exceptionally useful tool. A typical IPerf session invadva protocol must be implemented as a Globus XIO driver (how
user running IPerf as a server on one side of the network athik is done will be discussed later). For example, if ther use
as a client which connects to that server on the other. Théshes to measure the achieved bandwidth of the network
client then either sends a set amount of bytes or sends fousing TCP, he would run the XIOPerf on the server:
set amount of time and completes by reporting the throughput,, ; ...« opert -s -0 tep
and other stats to the user. The main difference betweeh IPer, ./ i o Toeainosisoo0s 77T
and XIOPerf is that while IPerf is limited to TCP and UDP, s
_XIOP(_erf is written ona frameworl_< that allows the user to plug and on the client:
in arbitrary protocol implementations.

% gl obus-xi operf -D tcp -c | ocal host: 50002

B. -l_rCP Connection established

. i ded. i ing.
Test TCP (TTCP) is a predecessor of IPerf and offers much" ™ e " "00: 10. 0000
Bytes sent: 5474.50 M

the same functionality. Both measure the performance of TCP Wite BW 437919 s
over a network. TTCP was originally created for the BSD e o0 0- 0000



¥|OPerf that allows for growth as new protocols are developed by
1 researchers.

V. GLoBUS XIO DRIVER CREATION

The success of XIOPerf hinges on the existence of Globus
X1O drivers for many bulk transfer protocols. We propose to
create these drivers in a couple of ways. The first is creating
drivers within the Globus XIO community. Many drivers have
been created in this way, including TCP, UDP, HTTP, File,
Mode E [17], UDT, Telnet, Queuing, Ordering, GSI, and
T T Multicast Transport [18]. All of these have been created by
using the native Globus XIO assistance APIs.

L,'_lj The second way we propose to scale up on driver production
is to allow the use of third-party libraries in Globus XIO
driver creation. We recognize that insisting the develsper
Fig. 2. XIOPerf architecture to implement their protocols by using native Globus XIO
APIs would often force them to reinvent the wheel. Many
implementations already exist, and thus it would be beragfici

To change the protocol used by XIOPerf to UDT [7], theéo create wrapper code to hook these libraries into the Globu
user need only change the string from “tcp” to “udt”. Byx|O driver interface.
specifying the -D option multiple times, the user can build To this end we introduce therapblock feature to Globus
a protocol stack over which the bulk transfer will occur|O. This is a simple extension to the original Globus
For example, if the user wanted to measure how a TGRO driver interface that allows for much easier creation of
transfer performed with GSI security, he would run the abofivers. The stock Globus XIO driver interface in written
command with an addition “-D gsi” argument appended to thgh a asynchronous model. While this is the most scalable
command line. and efficient model, it is also the most difficult to code

against. Further, many existing protocol implementatidos
IV. GLosus XIO not have asynchronous APIs, and transforming them into an

XIOPerf achieves the multiprotocol abstraction becaussynchronous model can be time consuming. The wrapblock
it is built on top of Globus XIO [11]. Globus XIO functionality uses thread pooling and event callback tephes
is the Extensible Input Output component of the Globus transform the asynchronous interface to a blocking fatex.
Toolkit(R) [16]. It is a framework that presents a singlensta This makes the task of creating a driver from an existing
dard open/close/read/write interface to many differentguol library a trivial task.
implementations. The protocol implementations are calledAs an example we look at thedt _r ef driver. This driver
drivers. Creation of drivers is discussed later in this papeises the wrapblock feature to glue the standard UDT [19]
Once created, a driver can be dynamically loaded and stackefkrence implementation into a Globus XIO driver. We were
by any Globus XIO application. XIOPerf takes full advantagable to create this driver and use it in the XIOPerf program in
of this feature. less than one day of work. To illustrate the ease in creation,

XIOPerf is a fairly simple application and gets most of itsve present in Figure 3 the code required to implement write
power from the Globus XIO library. The diagram in Figure Zunctionality.
illustrates how XIOPerf uses Globus XIO. XIOPerf is linked As is shown, the implementation requires a simple
against the Globus XIO library. It uses the Globus XIO APpass-through call to the UDT library. The actual num-
for all of its IO needs. Globus XIO then takes care of findinger of bytes written is passed back to Globus XIO
and loading the specified protocol drivers, establishing thy reference in the nbytes parameter. The data structure
connections using that driver stack, and passing the daiao_| _udt_ref _handl e_t is created in the open in-
buffers down the chain of drivers. terface call and is passed to all other interface calls as a

Since the drivers are loaded dynamically and adhere toganeric void * memory pointer. This allows the developer
standard interface, they do not have to be linked or corte maintain connection state across operations. Similde co
piled into the application. New drivers can be added to the written to handle reading data. In the open and close
LD LI BRARY_PATH at any time after the binary XlOPerfinterface function, the developer initializes and cleams u
installation has taken place. This is an important aspeesources as would be expected. The code inside the driver

Dafa Buflers

GlobusXIO 1
framewaork

SR papeo) A e udn




static
gl obus_resul t _t Overhead
gl obus_| _xio_udt_ref_write(
void * driver_specific_handle, 995 140
const gl obus_xio_iovec_t * iovec, ) A 7y
int i ovec_count, 9851 Iperf Throughput 2+ 120
. gl obus_size_t * nbyt es) & —&— XIOPerf Read Throughput /" -
a n
ol obus_resul t_t result: g 975 | * XIOPerf Write Throughput - 1 1003
xio_| _udt _ref_handle_t * handl e; = #— XIOPerf Read Overhead [ o
G obusXI ONane( gl obus_| _xio_udt_ref_wite); ‘5 — ¥I0OPerf Write Overhead N + 80 -]
o 965 ]
handl e = (xio_| _udt_ref_handl e_t *) driver_specific_handle; ﬁl / 4 60 f
a
*nbytes = (gl obus_size_t) UDT::send( g 955 s
handl e- >sock, (char*)iovec[0].iov_base, iovec[0].iov_|len, 0); E / + 40
I(f( nbytes < 0) = 945 [ S S T T S S 20
result = G obusXl QUdt Error (" UDT::send failed"); y
oto error;
_ 935 ‘ : : : 0
0 200 400 600 800 1000
return GLOBUS_SUCCESS; .
error: Number of Noop Drivers
return result;

} Fig. 4. Measurement of overhead with noop drivers

Fig. 3. A sample wrapblock write interface implementatiam &DT.

is entirely different, we see different times. The diffezen

looks very much like a simple program using the third-par@etween the two, however, is dramatic. This is due to some

API. There is little Globus XIO-specific code beyond thgonvenience functionality in Globus XIO. Internally Glabu

interface function signatures. This approach makes orgatf</O d0€s some event synchronization on the way up the stack

the driver easy for anyone already familiar with the upfo ensure that the user of the library re_ceives e_vents in a
reference library. Additionally, there are driver-spectiooks reasonable manner. For example, there is a barrier between
that allow the user to directly interact with the driver irder all data operation events and close events that guaraiiaes t

to provide it with optimization parameters. This interactis When the close event is delivered, no other events will be

handled via cntl functions that look much like the standaf@Cc€ved, and thus resources can be cleaned up safely. Witho
UNIX ioctl(). Further discussion on this can be found ar[h|s, users would have to reference count their events ok tra

http://www.globus.org/toolkit/docs/4.0/common/xio/. them in some other way that would unnecessarily complicate
the application.

VI. EXPERIMENTS
TABLE |

The first set of experiments shows the overhead introduced
OVERHEAD TIMES

by the Globus XIO framework. Since we are adding an
abstraction layer between the application and the code that Operation | Up | Down | Both
does the actual work of shipping bits, there will necesgpdd Read 0.014 | 0.001 | 0.007
some overhea_\d. In our first set_ of results_we_recorded the time \ggttﬁ 8:812 8:831 8:832
before we registered an event in the application space amd th
again when the event made its way to the driver's interface
function. This is the exact interval from the time the user To show how the overhead scaled in the presence of many
requests an operation to the time it can begin to be deliverddvers, we created the noop driver. This driver only ford&r
by the protocol implementation. This measurement is reterrrequests down the stack and completion notifications up the
to as “down the stack.” We also measure the time “up ttetack. It is intended to sit in the middle and do nothing but
stack.” This is the interval from immediately before thevedri add the overhead required for each additional driver. Many
signals it has completed its work to the time the applicatiarf these noop drivers were added to the stack to show how
is notified of the completion. These two measurements shadditional drivers affect the performance. We measured the
the exact overhead of the Globus XIO abstraction. We toalkerage overhead times up and down the stack, as before, but
the average of many hundreds of read and write operatiomh an increasing number of noop drivers. On the bottom of
and averaged them together both separately and together.tki¢e stack was the TCP driver, which did a bulk data transfer
ran the experiment on a UC TeraGrid [20] node with Dual 1.&cross the local gigabit network of the UC TeraGrid. To show
GHz Itanium processors and the Linux 2.4.21 kernel. Tabt®w this overhead affects performance, we also measured the
1 shows the results of the average overhead per operatioraghieved throughput of XIOPerf and IPerf. Figure 4 shows
milliseconds. this.

The results show that much more overhead is introduced upOverhead increased linearly with the addition of more
the stack than down the stack. Since the code path for eawop drivers, as expected. On average each driver adds 0.125




microseconds of overhead on our test system. Both reads @addwidth. The rtt is used because it takes into account the
writes add roughly the same amount of overhead. The achievede for a byte of payload to move from the sender to the
bandwidth was unaffected by the introduced overhead. Thexeiver and the time it takes for the acknowledgment to move
achieved throughput is steadily maintained at around 9%@m the receiver to the sender. Bw reflects the number ofsbyte
Mb/s. Since the ping time between the nodes in the transtaat can be sent in a given time slice.
is approximately 0.372 milliseconds, which is significgntl A user of TCP can select the maximum window size;
higher than all of the latency added by Globus XIO betwedrowever, TCP scales up and down the percentage of the
serial 1/0 operations, the delay of buffer delivery thatdslad window that it will use at any particular time. The algoritem
does not affect the throughput. that TCP uses to decide on the current window size are well
IPerf achieves a steady 990 Mb/s, which is better thalocumented elsewhere. Here we point out two aspects that
XIOPerf. The performance differences are likely due to thgreatly affect its effectiveness in LFNs and lambda network
asynchronous implementation of the TCP driver. Globus XIO The first is TCP’s slow start. TCP starts with a very
and IPerf are designed on different I/O models. IPerf Emall window size and exponentially increases the size as it
written with blocking socket code and threads. Globus XIO iceives acknowledgments. Slow start may sound like a bit of
designed for highly parallel and scalable systems so it igron a misnomer when the growth is exponential, but it really does
asynchronous model. Hence, performance of Globus XIO withake for a slow start. While linear growth would be much
applications displaying high levels of concurrent I/O slddae  worse, many round trips are needed before the window can
very steadily distributed across streams and ultimatetiyexe be fully open. In LFNs where the optimal window is large

the most scalable performance. and the time it takes to receive acknowledgments is large, it
may take the entire lifetime of the transfer or more to inseea
VIl. DRIVER EXPERIMENTS to an optimal window size. This is a performance killer.

In this section, we discuss three common bulk transfer The next issue in TCP is how it handles congestion events.
protocols: TCP, UDT, and GridFTP (Mode E). To show th&ince TCP is designed to be multistream friendly, if it difec
effectiveness of XIOPerf when evaluating protocols, weehathat one stream is moving too fast and thus causing congestio
compared the performance inside of XIOPerf against tliewill decrease this stream’s window size. The problem ente
reference implementation for each of these protocols. Buth how drastically the window size is decreased and how
transfers of increasing sizes were run over the Univerdity slowly it is rebuilt. When TCP detects a congestion event, it
Chicago (UC) TeraGrid LAN and on the wide area networdivides the window size by two. However, it will increase the
between UC TeraGrid nodes and TeraGrid nodes at the Seindow only by the size of one segment, around 1500 bytes,
Diego Supercomputer Center. No disk I/O was done in thier acknowledgment received. When the ideal window size

study. is many megabytes this opproach obviously makes a dropped
packet very costly in terms of performance. This algorithm
A. TCP is commonly referred to as additive increase multiplicativ

TCP [13], [21], [22] is a well-known and ubiquitous pro-decrease (AIMD).
tocol. We will therefore touch only on a few aspects of it The Globus XIO TCP driver is written on top of the standard
here. TCP is targeted at the Internet at large. It has doneBSD socket interface available on all Unix platforms. The
impressive job of scaling as the Internet has gone throughaetual protocol is implemented inside the kernel.
boom in terms of users as well as transfer rates. It provides
reliable and fair access to many users of a network. For s UDT
targeted audience it is a very good protocol; however, for UDT is a UDP-based reliable protocol and. like TCP, is
lambda networks [23] and LFNs [24] it is not ideal. targeted at shared networks. However, UDTs main audience
TCP is window based. A window size constitutes a certaia underused networks with a small number of UDT streams.
number of bytes that can be in flight at a given time. In flight is designed to coexist fairly with TCP streams but also
refers to the bytes that the receiver has not yet acknowtedde achieve high throughput faster and have less of a penalty
as having received. Various algorithms determine how afal a congestion event. Beyond being a protocol, UDT is a
when the receiver acknowledges bytes received. The sizefrafmework that allows users to plug in their own congestion
this window and the latency on the network greatly affect theontrol algorithms.
rate at which data can flow. The ideal size of the window is Like TCP, UDT uses a window and an AIMD strategy for
calculated by the bandwidth delay product: congestion control. The difference is that UDT determines
bwdp = rtt x bw the factors to use by a much more sophisticated strategy.
where rtt is the round trip time andw is the available Specifically, it sends two probe packets for every sixteda da



packets. These probe packets are sent sequentially wiingut  Categorically, parallel TCP protocols all have the same
regard for rate limiting. Based on the time between arrjvals advantages and disadvantages. The differences are largely
bandwidth estimate is made, which is then used to calculdtased on implementation. GridFTP is different in that it sloe
the additive increase factor. not stop at using parallel streams for endpoint-to-endpoin

The decrease factor is much less severe than TCP. Uparformance gain. It has extended the concept of parall® TC
decreases the window size only when a NAK is receivesfreams so that many different endpoints can participate in
This situation occurs less often then a TCP congestion evemtsingle, coordinated transfer in a M to N fashion. This has
Additionally, when the NAK is received, instead of cuttiriget the obvious advantage of summing the collective bandwidth
window in half, the window is set to 8/9 of its previous sizeavailable at all endpoint pairs.
This is still a multiplicative decrease, and a backoff of the The general advantage of using multiple streams is that it
sending rate, but it is a much less severe penalty. The isereproportionally reduces the disadvantages associated
factor is determined by looking at the greater of the follagei by the number of parallel streams. For clarity we will refer

o 10[(0g1l0((B=C)xMTU))] B/MTU to the number of parallel streams as P. The bandwidth delay

« 1/MTU product for each stream in a transfer is bw*latency/P, which

.is 1/P smaller than the optimal window size of a single TCP

where B is the bandwidth estimate, C is the current sendlggeam Therefore each window can be fully opened faster
rate, § is a constant value of 0.0000015 and MTU is thﬁ\nd since all streams are used in parallel the slow start of

_ma_lximum transmissio_n unit for th? networ_k. The UDT driVe*i’CP is theoretically reduced by 1/P. Similarly, the penalty
is implemented by using the previously discussed Wrapblogg
feature newly added to Globus XIO. We have wrapped t
reference implementation provided by Grossman et al. |

into a Globus XIO driver.

sociated with a congestion event is also reduced by 1/P.
stated above, TCP is most efficient when a properly set
ndow is fully open. When a congestion event occurs, the
window is closed and slowly rebuilt. This process constiut
_ a large penalty in a bulk transfer. If many streams are used,
C. GridFTP however, a single congestion event affects only one streah a
GridFTP [25] is a protocol for file transfers. GridFTP igherefore affects only 1/P of the overall transfer.
commonly misunderstood to be a single protocol for bulk The target network of Mode E is similar to that of UDT. It
transfer. This is not exactly true. It is not itself a singtetpcol is aimed at underused networks. If too many parallel streams
but, rather, is a collection of protocols. Much like the stard are used the protocol becomes unfair to other streams and can
well-known FTP protocol documented in RFC959, GridFTPotentially choke itself by causing too may congestion &ven
has two channels. The data channel is the pathway througifhe Mode E driver was written by using the native Globus
which the bulk data transfer flows. The control channel spextO driver API. This is the best solution for creating scal-
ification allows users to execute shell-like commands such able and efficient protocol drivers. Globus XIO provides an
mkdir, rename, and delete and to request files for transher. Tassistance API for creating drivers in this way.
control channel protocol is specified on top of telnet and.TCP
This protocol is not optimized for efficiency and thus is nop- Results
intended to be fast. It is simply a reliable means of estabiigs ~ The results of the performance evaluation are shown in
data channels pathways. Figures 5 through 10. We measured the achieved throughput
The protocol used for the data channel is open endesf. each protocol with increasing bulk transfer length. The
The authors of RFC959 had much foresight in realizing thahportant difference between the two networks over which
different users may prefer a different means of transfgrrinve tested is the latency between endpoints. On the LAN
the bulk data. To allow for this, they defined the data chanrstudy the latency was about 0.372 microseconds and the
protocol to be a Mode and then created a control changAN was about 58.140 milliseconds. The networks were not
command that allows the client to select what mode to ussngested so some of the aspects of each protocol were not
This gives the user the ability to decide what bulk protocol tested. Along with the throughput results, each graph also
use to send a file at transfer time. shows the percentage by which the reference implementation
The commonly used mode in GridFTP is called Mode Eutperformed the XIOPerf implementation. In all cases the
It is a parallel TCP protocol. A set of TCP connections igesult is less than 5%, which means that XIOPerf was always
established, and the data is transferred equally across. thavithin 95% of achieved throughput. As we stated above, each
While the transfer is in progress, TCP streams can be addg#dhe drivers studied here was written on a different model.
or removed. When the transfer completes, the establish&d TThe variance in percentage throughput difference is adedun
connections can be cached for use with a later transfer.  for by the differences in the implementations.
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network as observed with XIOPerf and the actual run of theefeice as observed with XIOPerf and Iperf.
implementation of the protocol.

UDT - LAN
Mode E - WAN
1000 20
1000 20
E 900 —;—-_---—----—
w900 4 2 T15
:‘:" | 15 5 800 o
T 800 g. < Reference Throughput 8
:g 8 5 700 ——— @ XIOPerf Throughput — 10 E
a 700 Reference Throughput 110 § g % Difference in Throughput @
5 —#- XIOPerf Throughput g 2 600 4 ° ghp . g
600 | i ; g = T
E % Difference in Throughput ls a ,'E 500
£
= 500 400 T T T T T T 0
400 . . . . —— — 0 0 300 600 900 1200 1500 1800 2100
0 300 600 900 1200 1500 1800 2100 Transfer Size (MB)
Transfer Size (MB R .
(M8) Fig. 9. Comparison of UDT protocol's performance on a logakanetwork

Fig. 6. Comparison of Mode E protocol's performance on a wadea as observed with XIOPerf and the actual run of the referemqseimentation
network as observed with XIOPerf and the actual run of theefefce of the protocol.
implementation of the protocol.

UDT - WAN
TCP - LAN
1000 20
1000 o r 20
s B 000 et

~ ) o r 15 @
3 T15 4 £ 800 g
= 800 k-1 -
s 22w, T 10 §
2 700 +—————-m- XIOPerf Throughput —110 § ) a ) 1ane E
s % Difference in Throughput e 3 600 F— % Difference in Throughput — s &

600 - o ] T
3 lg & £ 500 LW o TVTETIeET ST
< 500
F 400 . . . . . . 0

400 T T T T T T 0 0 300 600 900 1200 1500 1800 2100

0 300 600 900 1200 1500 1800 2100 Transfer Size (MB)
Transfer Size (MB) " " "
Fig. 10. Comparison of UDT protocol’'s performance on a wideaanetwork

Fig. 7. Comparison of TCP protocol’s performance on a locehaetwork as observed with XIOPerf and the actual run of the referemqseimentation
as observed with XIOPerf and Iperf. of the protocol.



Mode E has the lowest percentage. It is written by using the
native Globus XIO driver library and therefore is used in the
most efficient way possible. TCP has the highest percentage
difference in throughput. We believe this to be an anomay du

to how efficiently IPerf uses the kernel's TCP stack. While we int (
mal n

hope to increase the throughput of the Globus XIO TCP driver,
IPerf is strictly a performance measurement tool, and Xi®Pe
is much closer to a real application. Therefore IPerf has an
advantage in achieving very high throughput, but XIOPerf is
likely to be closer to what an actual application will actgev
especially if the application uses Globus XIO,

In future work we hope to decrease the performance gaps
substantially, especially in the case of TCP. Even with this
performance gap, however, XIOPerf is an useful tool for
determining which protocol is best to use. Since the acllieve
throughput inside of XIOPerf is very close to that of the
reference implementation all protocols are on level groamd
can be fairly compared. As part of the comparison, the way
the driver was created and the results shown here can also be
taken into account.
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APPENDIX
GLOBUS_XIO_EXAMPLE.C

#i ncl ude "gl obus_xi 0. h"

int argc,
char * argv[])

gl obus_resul t _t
char *

res;
driver_nare;

gl obus_xi o_driver _t driver;

gl obus_xi o_stack_t st ack;

gl obus_xi o_handl e_t handl e;

gl obus_si ze_t nbyt es;

char * contact_string = NULL;
char buf [ 256] ;

contact_string = argv[1];
driver_nanme = argv[2];

gl obus_nodul e_acti vat e( GLOBUS_XI O_MODULE) ;
res = gl obus_xio_driver_| oad(

driver_nane,

&driver);
assert(res == GLOBUS_SUCCESS);

res = gl obus_xio_stack_init(&stack, NULL);
assert(res == GLOBUS_SUCCESS);

res = gl obus_xi o_stack_push_driver(stack, driver);
assert(res == GLOBUS_SUCCESS);

res = gl obus_xi o_handl e_cr eat e( &andl e,
assert(res == GLOBUS_SUCCESS);

st ack);

res = gl obus_xi o_open(handl e,
assert(res == GLOBUS_SUCCESS) ;

contact_string, NULL);

do

res = gl obus_xi o_read(

handl e, buf, sizeof(buf) - 1, 1,
if(nbytes > 0)
{

&nbytes, NULL);

buf [nbytes] = '\0";
fprintf(stderr, "9%", buf);
} V\h%| e(res == GLOBUS_SUCCESS) ;

gl obus_xi o_cl ose(handl e, NULL);

gl obus_nodul e_deact i vat e( GLOBUS_XI O_MODULE) ;

return O;

Fig. 11. Example GlobusXIO user program
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